The Equations Defining Rees Algebras of Ideals of Hypersurface Rings

Matthew Weaver

Purdue University

October 18^{th} , 2021

Matthew Weaver

Equations Defining Rees Algebras

October 18th, 2021

Background

Suppose R is a Noetherian ring and I an R-ideal. Recall the Rees algebra is the graded ring

$$\mathcal{R}(I) = R \oplus It \oplus I^2 t^2 \oplus \dots = R[It] \subset R[t]$$

• If we specify a generating set, say $I = (\alpha_1, \ldots, \alpha_n)$, there is a natural epimorphism

$$\Psi: R[T_1,\ldots,T_n] \longrightarrow \mathcal{R}(I)$$

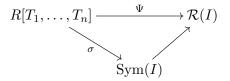
where $\Psi(T_i) = \alpha_i t$.

- The kernel of this map $\mathcal{J} = \ker \Psi$ is the *defining ideal* of $\mathcal{R}(I)$.
- Minimal generators of \mathcal{J} are the *defining equations* of $\mathcal{R}(I)$.

Matthew Weaver

The Symmetric Algebra

The original map factors through the symmetric algebra:



• If $R^m \xrightarrow{\varphi} R^n \longrightarrow I \longrightarrow 0$ is a presentation of $I, \mathcal{L} = \ker \sigma$ is generated by the entries of the matrix product

$$[T_1 \dots T_n] \cdot \varphi = [\ell_1 \dots \ell_m]$$

- With this $\mathcal{L} \subseteq \mathcal{J}$.
- Often $\mathcal{L} \subsetneq \mathcal{J}$, but if they are equal I is of *linear type*.

Matthew Weaver

Equations Defining Rees Algebras

Definition

An *R*-ideal *I* is said to satisfy G_s if $\mu(I_p) \leq \dim R_p$ for all $\mathfrak{p} \in V(I)$ with $\dim R_p \leq s - 1$. If *I* satisfies G_s for all *s*, then *I* is said to satisfy G_∞ .

- Equivalently I satisfies G_s if and only if ht $\operatorname{Fitt}_j(I) \ge j + 1$ for all $1 \le j \le s 1$.
- Recall

 $\dim \operatorname{Sym}(I) = \sup \left\{ \mu(I_{\mathfrak{p}}) + \dim R/\mathfrak{p} \, \big| \, \mathfrak{p} \in \operatorname{Spec}(R) \right\}$

• If I satisfies G_s for large s, \mathcal{L} is "closer" to \mathcal{J}

The Jacobian Dual

- With $R^m \xrightarrow{\varphi} R^n \longrightarrow I \longrightarrow 0$ a presentation as before, suppose $I_1(\varphi) = (x_1, \dots, x_s)$
- There exists an $s \times m$ matrix $B(\varphi)$ such that

$$[T_1,\ldots,T_n]\cdot\varphi = [x_1,\ldots,x_s]\cdot B(\varphi)$$

- $B(\varphi)$ is a Jacobian dual of φ .
- By Cramer's rule $I_s(B(\varphi)) \subset \mathcal{J}$
- $B(\varphi)$ is not necessarily unique!
- If R is standard graded and φ consists of linear entries, it is unique.

A Known Result

Theorem (Morey & Ulrich, 1996)

If $R = k[x_1, ..., x_d]$ and I is a linearly presented perfect R-ideal of grade 2 satisfying G_d , then $\mathcal{J} = \mathcal{L} + I_d(B(\varphi))$ where φ is the Hilbert-Burch presentation matrix for I. Furthermore $\mathcal{R}(I)$ is Cohen-Macaulay.

- One says that $\mathcal{L} + I_d(B(\varphi))$ is the *expected form* of \mathcal{J} .
- It is interesting to ask if \mathcal{J} is of the expected form if any of the assumptions are weakened:
 - ► G_{d-1} Nguyen (2014)
 - Almost linear presentation

Boswell & Mukundan (2016)

► Hypersurface ring

Weaver (2021)

Ideals in Hypersurface Rings

- $S = k[x_1, \ldots, x_{d+1}], f \in S$ a homogeneous polynomial of degree m, and R = S/(f)
- I a grade 2 perfect R-ideal satisfying G_d
- φ the Hilbert-Burch presentation matrix of I consisting of linear entries
- Assume $I_1(\varphi) = \overline{(x_1, \dots, x_{d+1})}$ and $\mu(I) = d+1$
- If \mathcal{J} is the defining ideal of $\mathcal{R}(I)$, is $\mathcal{J} = \mathcal{L} + I_{d+1}(B(\varphi))$? No!
- Notice $B(\varphi)$ is $(d+1) \times d$

- Let $\overline{\cdot}$ denote images modulo (f)
- Let ψ be a $(d+1) \times d$ matrix of linear entries of S with $\varphi = \overline{\psi}$
- There is a grade 2 perfect S-ideal J with ψ as its presentation matrix!
 - ▶ By Hilbert-Burch Theorem
- $I_1(\psi) = (x_1, \dots, x_{d+1})$
- J satisfies $\mathcal{G}_{d}, \mathcal{G}_{d+1}, G_{\infty}$ (hence linear type)
- We now know the defining ideal of $\mathcal{R}(J)$!

Let $[T_1, \ldots, T_{d+1}] \cdot \psi = [\ell_1, \ldots, \ell_d]$ and consider the $S[T_1, \ldots, T_{d+1}]$ -ideal

$$\mathcal{L} = (\ell_1, \dots, \ell_d, f)$$

• $\overline{\mathcal{L}}$ is the defining ideal of $\operatorname{Sym}(I)$

• Moreover,
$$\frac{S[T_1,...,T_{d+1}]}{\mathcal{L}} \cong \frac{R[T_1,...,T_{d+1}]}{\overline{\mathcal{L}}} \cong \text{Sym}(I)$$

- \mathcal{L} is also a defining ideal of Sym(I), but as an S-algebra!
- Is there a similar analogous ideal in $S[T_1, \ldots, T_{d+1}]$ for the defining ideal of $\mathcal{R}(I)$?

Let \mathcal{J} denote the defining ideal of $\mathcal{R}(I)$ and recall $\overline{\mathcal{L}}$ is the defining ideal of $\operatorname{Sym}(I)$

• I satisfies G_d so it is linear type on the punctured spectrum of R. Sum $(L) \simeq \mathcal{R}(L)$ for all $\mathfrak{p} \in \operatorname{Spec}(P) \setminus [\overline{(m-m-1)}]$

 $\operatorname{Sym}(I_{\mathfrak{p}}) \cong \mathcal{R}(I_{\mathfrak{p}}) \quad \text{for all } \mathfrak{p} \in \operatorname{Spec}(R) \setminus \{(x_1, \dots, x_{d+1})\}$

- \bullet In other words, $\overline{\mathcal{L}}_\mathfrak{p}\cong \mathcal{J}_\mathfrak{p}$ for these primes
- It then follows that $\mathcal{J} = \overline{\mathcal{L}} : \overline{(x_1, \ldots, x_{d+1})}^{\infty}$
- Consider the $S[T_1, \ldots, T_{d+1}]$ -ideal

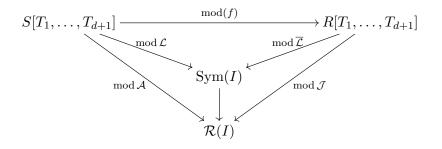
$$\mathcal{A} = \mathcal{L} : (x_1, \dots, x_{d+1})^{\infty}$$

R vs. S

We have produced the following correspondence between objects in ${\cal R}$ and ${\cal S}$

$R \& R[T_1, \ldots, T_{d+1}]$	$S \& S[T_1, \ldots, T_{d+1}]$
φ	ψ
Ι	J
G_d	G_{d+1} (G_{∞})
$\overline{\mathcal{L}}$	\mathcal{L}
${\cal J}$	\mathcal{A}

We can also view these connections in the following diagram



October 18th, 2021

Saturations

As before, $\mathcal{A} = \mathcal{L} : (x_1, \dots, x_{d+1})^{\infty}$

- Recall $\mathcal{L} = (\ell_1, \dots, \ell_d, f)$ and notice the equations of \mathcal{L} are linear with respect to x_1, \dots, x_{d+1} except f.
- Similar to Boswell and Mukundan's situation
- Using degree arguments (or local cohomology)

$$\mathcal{A} = \mathcal{L} : (x_1, \dots, x_{d+1})^m$$

where $m = \deg f$

• We associate a matrix to \mathcal{L} and the sequence x_1, \ldots, x_{d+1} .

Modified Jacobian Dual

Recall $\mathcal{L} = (\ell_1, \dots, \ell_d, f)$ where $[\ell_1 \dots \ell_d] = [x_1 \dots x_{d+1}] \cdot B(\psi)$

- $B(\psi)$ doesn't "see" f
- Let ∂f be any column with $f = [x_1 \dots x_{d+1}] \cdot \partial f$

• Extend
$$B(\psi)$$
 to $\mathcal{B} = [B(\psi) | \partial f]$

- \mathcal{B} is a modified Jacobian dual of ψ
- May take ∂f to be the column of partial derivatives of f if char k = 0
- Notice \mathcal{B} is $(d+1) \times (d+1)$

The Equations of $\mathcal{A} = \mathcal{L} : (x_1, \ldots, x_{d+1})^m$

- det $\mathcal{B} \in \mathcal{A}$ by Cramer's rule
- Is $\mathcal{A} = \mathcal{L} + (\det \mathcal{B})$? No! (unless m = 1)
- $\mathcal{L} + (\det \mathcal{B}) = \mathcal{L} : (x_1, \dots, x_{d+1}) \subset \mathcal{A}$
- Idea to get new equations:

$$\mathcal{L}: (x_1, \dots, x_{d+1})^2 = \underbrace{\left(\mathcal{L}: (x_1, \dots, x_{d+1})\right)}_{\mathcal{L}+(\det \mathcal{B})}: (x_1, \dots, x_{d+1})$$

• Can we associate a new matrix to $\mathcal{L} + (\det \mathcal{B})$ and the sequence x_1, \ldots, x_{d+1} ?

Modified Jacobian Dual Iterations

Let $\partial_{\underline{\cdot}}$ denote a column corresponding to an element and the sequence x_1, \ldots, x_{d+1} . Recall $m = \deg f$.

$$\mathcal{L}_{1} = \mathcal{L} \qquad \qquad \mathcal{B}_{1} = B(\psi) | \partial f \qquad \qquad F_{1} = \det \mathcal{B}_{1}$$
$$\mathcal{L}_{2} = \mathcal{L}_{1} + (F_{1}) \qquad \qquad \mathcal{B}_{2} = B(\psi) | \partial F_{1} \qquad \qquad F_{2} = \det \mathcal{B}_{2}$$
$$\mathcal{L}_{3} = \mathcal{L}_{2} + (F_{2}) \qquad \qquad \mathcal{B}_{3} = B(\psi) | \partial F_{2} \qquad \qquad F_{3} = \det \mathcal{B}_{3}$$
$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$\mathcal{L}_m = \mathcal{L}_{m-1} + (F_{m-1}) \qquad \mathcal{B}_m = B(\psi) \,|\, \partial F_{m-1}$$

By Cramer's rule $\mathcal{L}_i + (\det \mathcal{B}_i) \subseteq \mathcal{L} : (x_1, \dots, x_{d+1})^i$

• Is
$$\mathcal{A} = \mathcal{L}_m + (\det \mathcal{B}_m)$$
? Yes!

- This is actually a *minimal* generating set!
- Adopt the bigrading on $S[T_1, \ldots, T_{d+1}]$

$$\deg x_j = (1,0) \qquad \ \ \deg T_j = (0,1)$$

• deg
$$(\det \mathcal{B}_i) = (m - i, d \cdot i)$$

• In particular $\mu(\mathcal{A}) = d + m + 1$ and $\mu(\mathcal{J}) = d + m$

Cohen-Macaulayness of $\mathcal{R}(I)$

- Recall dim $\mathcal{R}(I) = d + 1$
- depth $\mathcal{R}(I) \ge d$
 - If m = 1, then depth $\mathcal{R}(I) = d + 1$

• If
$$m \ge 2$$
, then depth $\mathcal{R}(I) = d$

- $\mathcal{R}(I)$ is Cohen-Macaulay if and only if deg f = 1 and is *almost* Cohen-Macaulay otherwise
- Other invariants such as regularity, relation type, etc. can also be deduced

The Main Result

Theorem

Let $S = k[x_1, \ldots, x_{d+1}]$, $f \in S$ a homogeneous polynomial of degree m, and R = S/(f). Let I be a perfect R-ideal of grade 2 with linear presentation matrix φ . If I satisfies G_d , $I_1(\varphi) = \overline{(x_1, \ldots, x_{d+1})}$, and $\mu(I) = d + 1$, then the defining ideal of $\mathcal{R}(I)$ satisfies

$$\mathcal{J} = \overline{\mathcal{L}_m + (\det(\mathcal{B}_m))}$$

where $(\mathcal{L}_m, \mathcal{B}_m)$ is an m^{th} modified Jacobian dual iteration of $(\mathcal{L}, \mathcal{B})$ for modified Jacobian dual \mathcal{B} and $\mathcal{L} = (\underline{x} \cdot \mathcal{B})$. Additionally $\mathcal{R}(I)$ is Cohen-Macaulay if and only if m = 1 and is almost Cohen-Macaulay otherwise.

This recovers Morey and Ulrich's result (for $\mu(I) = d + 1$) when deg f = 1.

Matthew Weaver

Equations Defining Rees Algebras

October 18th, 2021

- This method fails for $\mu(I) > d+1$
- Using recent work of A. Costantini, this result can be extended to Rees algebras of modules of projective dimension 1 over hypersurface rings.
- A similar process is used to produced the defining equations of the Rees algebra of a perfect Gorenstein ideal of grade 3 of a hypersurface ring
- One could consider Rees algebras of ideals of complete intersection rings